

Timisoara, 25-26 May

BORON COMPOUNDS: CHALLENGES AND APPLICATIONS IN FOOD INDUSTRY

Veronica Filimon¹, Alexandra Virginia Bounegru², Simona Butan^{2*} "Dunarea de Jos" University of Galati, ¹Cross-Border Faculty and ²Faculty of Sciences and Environment, 47 Domnographic Street, 200008, Calati, Domania

Environment, 47 Domneasca Street, 800008, Galati, Romania

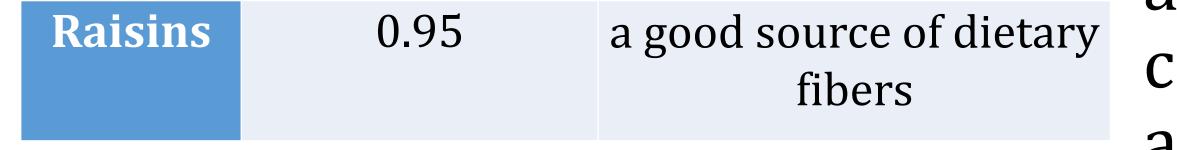
Abstract: Boron-based compounds have various applications in the food industry, for instance boric acid and borax are used as food additives to improve the texture and stability of foods, meanwhile calcium fructoborate is an essential nutraceutical used in the development of beverages, dietary supplements and functional foods such as protein foods and baked goods. • Applications of boron compounds

in food industry

Introduction

Boron-based compounds have many industrial applications, such as: the chemical industry, the pharmaceutical industry and the food industry. The use and marketing of foods

, ,	Boron-based	Applications in food
1	compounds	industry
)	Boric acid (E 284) and	Certain nutritional
	sodium tetraborate	applications and food
`	(borax) (E 285)	supplements
	Boric acid, disodium	Design of new biodegradable
	octaborate	antimicrobial packaging films
	tetrahydrate and	from gelatin
5	sodium pentaborate	
	Hexagonal boron	Improvement of the strength
	nitride with a similar	and ductility of foods
_	structure as graphite	packaging films
	Carbon quantum dots	Development of active
	(CQDs) based on	packaging for food films as
	glucose and boron	functional fillers
	Chemical synthetized	A novel food (NF): 2,9%
	calcium fructoborate	boron, 4,7% calcium and
		84,2% fructose


with boron-based compounds is regulated by the Food and Drug Administration (FDA) in the United States and the European Food Safety Authority (EFSA) in Europe.

• Boron food sources

Foods	Boron content (mg B/100 g)	Health benefits
Avocado	1.07	a great source of healthy fats and dietary fibers
Peaches	0.80	a great source of antioxidants
Prune juice	1.43	a good functioning of digestive and bone system

• Conclusions

So, it is mandatory to follow the regulations established by food agencies and to use boron-based compounds only in safe and the approved amounts.

